The cytotoxic and genotoxic potential of titanium dioxide (TiO2) nanoparticles on human SH-SY5Y neuronal cells in vitro
نویسنده
چکیده
Titanium dioxide (TiO2) nanoparticles are one of the most commonly used nanomaterials. They are used in plastics, sunscreens, personal care products, pharmaceuticals and the food industry due to their photocatalytic properties, high refractive index and generally unreactive nature. Their vast range of applications, and hence potential exposure to humans, raises concern over the safety of the nanomaterial. TiO2 nanoparticles have been extensively studied; however, their toxic effect on humans is still poorly understood, particularly the adverse effects they may have on the nervous system. In vivo studies have shown that TiO2 nanoparticles are able to enter the brain via circulation and through the olfactory pathway. Because of their potential genotoxicity and carcinogenic effect, the aim of this study was to assess the cytotoxic and genotoxic potential of TiO2 nanoparticles on human SHSY5Y neuronal cells. Anatase TiO2 nanoparticles were used in this experiment due to their extensive use in industry. Results obtained from this study show that TiO2 nanoparticles are able to induce DNA damage in neuronal cells at concentrations of 3000μM (239.61μg/ml) after 24 and 48 hours of exposure, but do not significantly alter cell viability even at concentrations as high as 10,000 μM (798.66 μg/ml). Cell morphology, as determined by scanning electron microscopy, was also unaltered in this study. Further study is required to determine cell internalisation and the mechanisms behind the genotoxicity induced by TiO2 nanoparticles. The Plymouth Student Scientist, 2016, 9, (2), 5-28
منابع مشابه
Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles
Nanoparticles (NPs) of zinc oxide (ZnO) and titanium dioxide (TiO2) are receiving increasing attention due to their widespread applications. The aim of this study was to evaluate the toxic effect of ZnO and TiO2 NPs at different concentrations (50, 100, 250 and 500 ppm) and compare them with their respective salts using a battery of cytotoxicity, and genotoxicity parameters. To evaluate cytotox...
متن کاملRole of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.
The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fi...
متن کاملThe comparison of the apoptosis effects of titanium dioxide nanoparticles into MDA-MB-231 cell line in microgravity and gravity conditions
Objective (s): Gravity could affect some system features and perform directly as an organizing field factor. Recent investigations have examined the titanium dioxide nanoparticles (TiO2 NPs) in biomedical applications, mostly in the cancer treatment field. This study aimed to evaluate the effects of simulated microgravity combined with TiO2 NPs in MDA-MB-231 cells proliferation for the first tim...
متن کاملAn in vitro study on the induction of micronuclei and other nuclear anomalies in peripheral blood lymphocyte culture by metal oxide nanoparticles
Increase in the production and release of engineered nanoparticles are known to induce genetic alterations that directly and indirectly affect the human health. The present study was aimed to evaluate the genotoxic potential of two metal oxide nanoparticles, silicon dioxide (SiO2-NPs) and titanium dioxide (TiO2-NPs), in human peripheral lymphocyte in vitro. Human peripheral blood cells were cul...
متن کاملCore–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol
Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...
متن کامل